Role of the insulin-like growth factor I/insulin receptor substrate 1 axis in Rad51 trafficking and DNA repair by homologous recombination.

نویسندگان

  • Joanna Trojanek
  • Thu Ho
  • Luis Del Valle
  • Michal Nowicki
  • Jin Ying Wang
  • Adam Lassak
  • Francesca Peruzzi
  • Kamel Khalili
  • Tomasz Skorski
  • Krzysztof Reiss
چکیده

The receptor for insulin-like growth factor I (IGF-IR) controls normal and pathological growth of cells. DNA repair pathways represent an unexplored target through which the IGF-IR signaling system might support pathological growth leading to cellular transformation. However, this study demonstrates that IGF-I stimulation supports homologous recombination-directed DNA repair (HRR). This effect involves an interaction between Rad51 and the major IGF-IR signaling molecule, insulin receptor substrate 1 (IRS-1). The binding occurs within the cytoplasm, engages the N-terminal domain of IRS-1, and is attenuated by IGF-I-mediated IRS-1 tyrosine phosphorylation. In the absence of IGF-I stimulation, or if mutated IGF-IR fails to phosphorylate IRS-1, localization of Rad51 to the sites of damaged DNA is diminished. These results point to a direct role of IRS-1 in HRR and suggest a novel role for the IGF-IR/IRS-1 axis in supporting the stability of the genome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO

The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...

متن کامل

Inhibition of Both EGFR and IGF1R Sensitized Prostate Cancer Cells to Radiation by Synergistic Suppression of DNA Homologous Recombination Repair

Reduced sensitivity of prostate cancer (PC) cells to radiation therapy poses a significant challenge in the clinic. Activation of epidermal growth factor receptor (EGFR), type 1 insulin-like growth factor receptor (IGF1R), and crosstalk between these two signaling pathways have been implicated in the development of radiation resistance in PC. This study assessed the effects of targeting both re...

متن کامل

Coupling of mutated Met variants to DNA repair via Abl and Rad51.

Abnormal activation of DNA repair pathways by deregulated signaling of receptor tyrosine kinase systems is a compelling likelihood with significant implications in both cancer biology and treatment. Here, we show that due to a potential substrate switch, mutated variants of the receptor for hepatocyte growth factor Met, but not the wild-type form of the receptor, directly couple to the Abl tyro...

متن کامل

Insulin-like growth factor I gene polymorphism associated with growth traits in beluga (Huso huso) fish

The aim of the present study was to detect polymorphism in Insulin like growth factor-I (IGF-I) gene of beluga (Huso huso) fish using PCR-SSCP technique and also investigation of its association with growth traits (condition factor, body length and weight). A total of 150 specimens of beluga were randomly selected and DNA was isolated from caudal fin using modified salting out method. Then two ...

متن کامل

Insulin-like growth factor I gene polymorphism associated with growth traits in beluga (Huso huso) fish

The aim of the present study was to detect polymorphism in Insulin like growth factor-I (IGF-I) gene of beluga (Huso huso) fish using PCR-SSCP technique and also investigation of its association with growth traits (condition factor, body length and weight). A total of 150 specimens of beluga were randomly selected and DNA was isolated from caudal fin using modified salting out method. Then two ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 23 21  شماره 

صفحات  -

تاریخ انتشار 2003